Visual Tracking via Hierarchical Deep Reinforcement Learning
نویسندگان
چکیده
Visual tracking has achieved great progress due to numerous different algorithms. However, deep trackers based on classification or Siamese network still have their specific limitations. In this work, we show how teach machines track a generic object in videos like humans, who can use few search steps perform tracking. By constructing Markov decision process Deep Reinforcement Learning (DRL), our agents learn determine hierarchical decisions mode and motion estimation. To be specific, Hierarchical DRL framework is composed of Siamese-based observation which models the information an arbitrary target, policy for switch actor-critic box regression. This strategy more line with human behavior paradigm, effective efficient cope fast motion, background clutter large deformations. Extensive experiments GOT-10k, OTB-100, UAV-123, VOT LaSOT benchmarks, demonstrate that proposed tracker achieves state-of-the-art performance while running real-time.
منابع مشابه
Deep Reinforcement Learning for Visual Object Tracking in Videos
Convolutional neural network (CNN) models have achieved tremendous success in many visual detection and recognition tasks. Unfortunately, visual tracking, a fundamental computer vision problem, is not handled well using the existing CNN models, because most object trackers implemented with CNN do not effectively leverage temporal and contextual information among consecutive frames. Recurrent ne...
متن کاملComposite Task-Completion Dialogue System via Hierarchical Deep Reinforcement Learning
Building a dialogue agent to fulfill complex tasks, such as travel planning, is challenging because the agent has to learn to collectively complete multiple subtasks. For example, the agent needs to reserve a hotel and book a flight so that there leaves enough time for commute between arrival and hotel check-in. This paper addresses this challenge by formulating the task in the mathematical fra...
متن کاملHierarchical Object Detection with Deep Reinforcement Learning
We present a method for performing hierarchical object detection in images guided by a deep reinforcement learning agent. The key idea is to focus on those parts of the image that contain richer information and zoom on them. We train an intelligent agent that, given an image window, is capable of deciding where to focus the attention among five different predefined region candidates (smaller wi...
متن کاملVideo Captioning via Hierarchical Reinforcement Learning
Video captioning is the task of automatically generating a textual description of the actions in a video. Although previous work (e.g. sequence-to-sequence model) has shown promising results in abstracting a coarse description of a short video, it is still very challenging to caption a video containing multiple fine-grained actions with a detailed description. This paper aims to address the cha...
متن کاملComposite Task-Completion Dialogue Policy Learning via Hierarchical Deep Reinforcement Learning
Building a dialogue agent to fulfill complex tasks, such as travel planning, is challenging because the agent has to learn to collectively complete multiple subtasks. For example, the agent needs to reserve a hotel and book a flight so that there leaves enough time for commute between arrival and hotel check-in. This paper addresses this challenge by formulating the task in the mathematical fra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2021
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v35i4.16443